第二百六十一章 十天一篇SCI
中,只介绍了莱布尼兹判别法这一种判定方法。并且,莱布尼兹判别法的应用条件比较严格,尤其对于复杂通项,单调递减条件既不容易判断大多又很难保证。    恰巧,那天的下午,程诺刚从卢教授那边做出了一道和泰勒公式有关的题目。所以听到数学系的数分老师讲到交错级数这个知识点的时候,就宛如灵光一闪般,程诺的脑海里就冒出一个想法:    是不是能够将泰勒公式引入交错级数收敛性的判别,对交错级数通项进行展开,再逐项进行收敛性判别?    这个想法在程诺的脑子里一冒出来,就挥之不去。    索性,程诺直接在课堂上拿出草稿纸算了起来。    用了两节课的时间,程诺大致差不多知道,自己的想法,应该没错。    泰勒公式,这是应用性极广的公式,在判定交错级数的收敛性上,也是可以适用的。    剩下的事情就简单了。    用了一周多,程诺趁着咸鱼的时间,添添补补,完成了这片论文。    …………    镜头再次回到王根基那边。    他看到程诺的论文题目后,先是疑惑了一下。    泰勒公式应用于判定交错级数收敛性?    这个,还是王根基第一次听说能这么干。    带着一种怀疑的态度,王根基继续往下看。    下面是程诺论文的正文。    “由泰勒公式有:fx=f0 f''''0x f''''''''£/2*x^2,其中,£在0与